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A novel Lagrangian type of MHD code has been developed by treating elements of the 
fluid as finite-sized particles. The particle quantities, i.e., position, mass, momentum and 
temperature, are pushed in a Lagrangian way, while the magnetic fields are advanced in an 
Eulerian manner. The fully Lagrangian fluid is represented by a distribution of Gaussian- 
shaped particles. Drag forces between particles with different velocities in the same sell 

prevent extensive multi-streaming from developing. A combination of finite differences, 
to calculate the magnetic field, and fast Fourier transforms, to evaluate the pressure gradient 
rerm, guarantees momentum and magnetic flux conservation. The use of particles eliminates 

many diikulties often associated with Eulerian codes such as, for example, negative 
densities. The method also means that any particle code of which there arc many can be 
converted to a fluid code. The codes have been extensively tested with the propagation of 
sound waves, Alfven and magnetosonic waves among others. Applications of the codes to 
hydrodynamics and magnetohydrodynamics in one, two and rbree dimensions, in Cartesian 
as well as in toroidai geometry, are further discussed. 

I. INTRODUCTION 

In the past two decades two paths have primarily been iollowed in plasma physics 
to simulate complicated plasma phenomena. The first models the plasma as a fluid 
and leads to the traditional fluid codes while the second reconstructs the plasma from 
individual particles and gives rise to the more recent particle codes. Although Nuid 
codes lack facilities to incorporate self-consistent transport coefiicients crucial to 
the study of plasmas, they have been extensively used because realistic geometries 
are handled with relative case and slow MHD time scales can be readily followed. 
Since particle codes treat the plasma dynamics rigorously, they prove very helpful 
in the study of difficult nonlinear problems. However it is almost never possible to 
carry in the computer memory as many particles as are involved in the actual physical 
problem of interest nor is it possible to cover the wide range of time scales that occur 
in controlled thermonuclear research (CTR) situations within feasible simulatinn 

times. A great leap forward to tackle the first difficulty was brought abotit by the 
finite size particle codes [l-4]. This method to simulate collisionless plasmas signi- 
ficantly relaxed the condition on the number of particles required for meaningul 
simulation. Due to the finite extent of the particles only a tractable number of these 
macroparticles is needed to effectively suppress excessive noise due to short range 
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Coulombic collisions and yet long range forces and thus collective phenomena are 
correctly represented. The second difficulty with particle codes has been harder to 
overcome to date. The fundamental time step used in particle pushing is restricted 
by the fastest occuring phenomenon whose frequency is usually either the plasma, 
electron cyclotron, or the photon frequencies. This restriction is extremely severe 
for CTR applications, since such plasmas most often encompass short time scale 
(IO-l2 second) phenomena up to confinement time scale (100 second) phenomena. 
Various schemes have been tried to bridge this many orders of magnitude gap in 
the time scales. The following are just a few among many, if piecemeal, attempts: 
magnetostatic codes [5], which neglect a fast radiation term to enlarge the time step, 
hybrid (electrons as fluid-ion particles) codes [6] and quasi-neutral codes [7]. The 
time step taken in the last two is generally the ion plasma period. 

The MHD code we present in this article is in line with this effort to lengthen the 
time step as much as possible and simulate long time scale phenomena and as such 
is at the end of the line, since the largest time scale relevant to plasma physics is the 
MHD time scale. The present code exploits many of the techniques developed in 
particle codes. We employ finite size particles to represent elements of a single neutral 
fluid. Their shape factor now represents a mass distribution rather than the charge 
cloud of the electrostatic codes. In addition to the quantities that are carried in particle 
codes, such as position and velocity, particles can be assigned other quantities, such 
as temperature. A spatial mesh is superposed on the particles for computational 
convenience and fluid quantities are naturally accumulated as averages at mesh points 
from the particle quantities. Field quantities, such a magnetic fields, are only assigned 
at the mesh points. Fast Fourier transform techniques can be used to calculate forces 
at the grid points from the accumulated quantities. The particle pressure gradient 
is calculated from the density in Fourier space as is the electric field in the particle 
codes [S]. The magnetic force is calculated through the magnetic stress tensor which 
is evaluated at grid points. A difference from the magnetostatic or electromagnetic 
particle codes is that the self-consistent current is given as a grid quantity. In some 
cases fluid models tend to develop multistreaming of particles within one cell (particles 
in the same cell have quite different velocities) such as with shock formation. In 
applications of this code to hydrodynamics, it is not tolerated that particles may have 
significantly different velocities while occupying the same region of space, since a 
classical fluid is collisional in nature. Drag forces are then introduced between par- - 
titles in the same cell to damp out any local anaomalies should they occur and allow 
particles to “communicate” and in this way insure a smooth flow. One might consider 
such drag forces arising from local turbulence which would occur if multistreaming 
were to arise. Phenomenological coefficients could be used to model these effects 
if they are known. 

From the standpoint of fluid codes, we can look upon our scheme as a new method 
to solve the Lagrangian fluid equations. Traditionally two methods of extreme sort 
have been used to simulate fluid dynamics: the Lagrangian and Eulerian schemes. 
Conventional Lagrangian codes [9] create cells moving with fluid elements. For more 
than one dimension such an approach encounters serious difficulties in keeping track 
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of rhe cells since the fluid can entangle in a very complicated way. In the Eulerian 
approach [lo] the mesh of cells is fixed in a frame of reference at rest with the observer 
and the fluid streams by across the mesh. Its advantage is that the calculation proceeds 
without difhculty when there are large distortions in the fluid. Apart from being overly 
diffusive [ll], this scheme has serious flaws, most notably the fluid density can go 
negative. The main difficulty lies in the advective terms of the Euierian equations. 
To cure this, some numerical terms like, for example, additional diffusion are intro- 
duced in the continuity equation. Recently the elaborate techniques F,12] of -Flux 
corrected transport have been introduced and have successfully handled these 
problems; however, they extract an expanse in terms of the speed and ccmpiexity 
of the code. Since in the present code, “particles” carry the quantities associated with 
fluid elements across the fixed background mesh, the advedive terms do not appear 
and the main difficulty of the Eulerian scheme is readily removed. Their finite size 
provides efficient coarse-graining of the particle quantities to obtain fluid quantities. 

This development parallels two updates, GAP ]13] and PAL [14], of the particle 
in cell (PIC) [IS] method, the pioneer in fluid simulation using particles. PIG distri- 
butes fluid quantities on a mesh and has the particles carry mass weighted portions of 
these quantities from cell to cell. This is unfortunately just as diffusive [14] as Eulerian 
hydrodynamics codes except for mass. Both GAP and PAL modify PfC to SuiIy 
represent a Lagrangian kid and use the mesh only as calculationai convenienceF 
which procedure is in our case a natural consequence of applying finite size particies. 
Both GAP and PAL employ the rather cumbersome area weighting method to give 
particles their spatial extent and conventional fmite differences to calculate pressure 
gradients. 

The organization of the paper is as follows. ln Section II, extensive description 
of the present model and its conservative properties are presented. Section 111 is 
devoted to a descrption of the codes developed according to our model in one, t.vo 
and three dimensions in Cartesian as well as in toroidai geometry. Code che&s vvith 
respect to the theoretical dispersion relation of sound waves a,nd Alfven haves are _ 
aiso given. Applications of the codes to shock waves, the Kelvin-Helm&z instability 
and an obstacle in a flow are detailed in Section IQ. Coachrsions drawn from the 
results are given in Section V. 

II. FLUID NIODEL WITH FINITE SIZE PARTKLES 

A system of magnetohydrodynamics is appropriately descri’oed by an equation of 
motion (momentum) and an equation of temperature (sometimes, an equation of 
state) coupled with Maxwell’s equations without the displacement current. The present 
code exploits the following feature: equations of motion (momentum and temperature) 
can be expressed in a Lagrangian fashion, while the field equations (Maxweh’s 
equations) can be expressed in an Eulerian way. The task of solving Eagrangian 
equations is most conveniently carried out by introducing a finite number of finite- 
sized particles carrying physical quantities which obey the Lagrangian equations. 
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First of all, this scheme readily removes many difficulties associated with conventional 
Eulerian codes, such as negative densities and advective numerical instabilities. 
Secondly, this scheme can overcome the need for a large number of particles 
to suppress large statistical fluctuations which are not associated with Eulerian fluid 
codes. The finite-size particles coupled with the fast Fourier transform method pro- 
vide adequate and well-tested tools to eliminate the need for excessive particle 
numbers. Another feature of the Lagrangian equations in the code is the introduction 
of Krook type drag terms. This prohibits excessive multi-streaming and still insures 
momentum conservation. The equation of motion is organized in such a way that the 
total momentum of the particles (as well as the fluid momentum) is rigorously con- 
served before and after particle pushing. For the equation of temperature one can 
resort to similar measures and retain conservation of energy. 

On the other hand, the field equations are most easily treated using an Eulerian 
scheme. So we assign field quantities to grid points. The equation to update the 
magnetic field is cast in such a finite difference form that the total magnetic flux is 
rigorously conserved before and after field pushing. One is then guaranteed magnetic 
charge is not generated during a certain period of time. For a bounded plasma, we 
introduce boundary conditions so as to preserve the above conservative code 
properties. 

A. Ideal MHD Scheme 

Our finite size particle method effectively solves the continuity equation by correctly 
simulating the dynamics of the particles which make up the fluid. An appropriate 
number of Gaussian-shaped finite size neutral particles are thus initialized in the 
calculation at position r,(O) at time t = 0. Their later position is found at time t 
by integrating their orbit equations forward, namely 

dr&) 
dt = Vi(f), (1) 

given that the velocity of each particle is known as a function of time through the 
equation of motion. 

In the ideal MHD case, the equation of motion for each particle is written as follows 

dvi(t) __ = 
dt 

-IV&1Vp+ 
P 8TP 

-!- V . (BB), 
477P 

where the magnetic force terms are cast into momentum conservative form given that 
the divergence of the magnetic field is zero. 

The left hand side of Eq. 2 is the total derivative of the i-th particle velocity while 
the right hand side only involves macroscopic quantities i.e., quantities defined at 
the mesh points of the fixed background grid and the mass density p. This part of 
the calculation performed on the frame of the particles is Lagrangian. 

While the magnetic force terms are evaluated by hnite difference methods, the 
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particle pressure gradient is calculated efficiently and accurately using a Fast Fourier 
Transform algorithm. This parallels the charge density and field calculation in the 
electrostatic finite size particle codes. 

:n the isothermal case VP becomes 

VP = TVn. (3) 

This density is in turn expressed as 

n(r) = Cf(r - rjj, 

where the summation runs over all particles. The quantity J(r - rij represents, in 
a sense, the spatial distribution of mass about the central point ri of the particle. In 
the present paper we adopt a normalization convention for spatial dimensions such 
that the particle number and number density are mutually interchangeable, i.e7 
the grid spacing A is equal to unity. Without this assumption, the equations would 
be overly complex with such a factor as Ad for the different dimensions d (one. two 
or three). In this way, the equations are the same regardIess of the dimensionality 
of the particular version of the code. The explicit form we use forfis a Gaussian of 
radius a, namely (in the most general three-dimensional case) 

exp[-(x - xij”/2a” - (41 - yi)‘j2$ - (z - zi)“/2$] (“;j 

However any other convenient form for f could be used. The particle positions T; 
are determined in terms of the nearest grid point rs and the density then has the form 

The summation is over all points g = (1, nr?, n) on the three dimensional grid and 
PNGP is expressed as the number of particles in cell g i.e., 

What we shall describe are nearest grid point codes; however, it should be possible 
to introduce corrections similar to the dipole expansion used in electrostatic models. 
The Fourier transform (nk) can now be obtained by performing a single three-dimen- 
sional Fourier transform. Therefore, 

f?(k) = (L&Lz)-l exp(--k2n2/2) C exp( --ik * rLI) PNGP( g), @> 

u(k) = exp(--k%“/2) * FFT[pNGp( g)!. (0) 
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The quantities L, , L, , L, are the dimensions of the (x, p, z) grid while the term 
exp(-kW/2) is just the form factor of the finite size Gaussian shaped particles. The 
density gradient is written as 

(V& = ikn(k). (10) 

The force in real space is subsequently obtained by an inverse Fourier transform 
of the above quantity. 

In actuality, Eq. (2) should explicitly contain a particle drag term between particles 
in a single cell to prevent multistreaming; including such a term the equation for the 
velocity in finite difference form is written 

$H1!2 = ,?4l2 
1 z + At Fsgl/nsn - ,(zJ~-~“~ - Uj$id), (11) 

where n stands for t = IZ At, F,” represents the right hand side of Eq. (2) and v is an 
adjustable viscous drag coefficient. The fluid velocity is defined as the average velocity 
of all particles in a given cell before updating. 

(n) _ Ufluid - (u)(“) = c $-1’2yn,“. 
ieg 

The denominator ngn represents the number of particles in cell g at time t = n At, 
It should be noted that &, vi in the continuum limit goes to nv. Eq. (12) guarantees 
that there appears no net force from the drag term in particular cell (see 
also Appendix). If v = 0, the velocity of each particle is leap-frogged; if v = 1, 
the fluid velocity of each cell <t) 1 tn) is leap-frogged since, when the velocity is updated, 
the particle positions and thus the fluid density are unchanged. Because of this leap- 
frogging we expect only slight numerical diffusion. This may not be the case for the 
GAPlo code, since it is essentially a first order scheme. 

Now let us prove that Eq. (11) is momentum conservative: the sum over all particles 
on the left hand side should vanish in a periodic system. After summation, one obtains 

(13) 

where we used the definition of fluid velocity given by Eq. (12). 
In the finite difference scheme, every grid quantity on the right hand side of Eq. (13) 

appears twice with a different sign. Thus for any mesh quantity VA, the summation 
of VA over all cells is zero for our uniform spatial mesh. 

Therefore, given that, when summed over a11 particles, the drag term is identicahy 
zero, Eq. (13) yields 

5 pn(v:+l’2 - pfi) = 0. (14) 

In other words, total momentum is rigorously conserved. 
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The induced magnetic field is determined from a partial dEerentia1 equation in 
an Eulerian frame, i.e. 

653 
_ = v x (v x B). 
6t 

In the above equation v stands for the fluid velocity previously defined from the 
particle velocities and the magnetic field B on the right hand side is the total field, 
i.e., the initial plus induced magnetic fields. Since v and B are grid quantities, 
the field pushing equation appears in its Eulerian form. It is readily integrated in 
time by the conservative Lax method [16], known to be stable as long as the Gourant- 
Friedrichs-Lewy (CFL) condition on the time step is met. For a periodic system, 
our scheme is flux conservative. Indeed, finite difierencing of the right hand side of 
Eq. 15 and summation over all grid points yields 

because of the ‘V operator in front of the L’ x B term. Here a grid cell has unit area. 

In principle particles can carry any quantity 0 besides their positions and velocities 
as long as the governing equation for that particular quantity, can be cast into the 
form 

dO/dt = L, (17) 

where L only involves grid quantities. In particular the temperature is one such 
quantity and in our code we take temperature as an additional quantity carried by 
the particles. In subsection B and in the Appendix more discussion is given on the 
temperature equation. 

B. Resistive MHD Scheme 

When the MHD fluid is resistive i.e., non ideal, some transport coefficients such 
as resistivity and heat conductivity must be included in our model. 

While the orbit equation and the equation of motion are unchanged, the field 
equation now becomes 

i?B -=Vx(uxB) 
& 

-$7xq.(Vx 

where the resistivity YJ is in general a tensor. Note that the field pushing equation is 
again flnx conservative for a periodic system. 

Because of the conductivity and heat diffusivity the temperature equation, obtained 
from the second moment of the kinetic equation, can be written as follows 

dTi -= 
dt 

- ; [(P -0) * v-.J.(E+;v xB)+p,(W v)fV.W]. (r9) 
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Here pe is the charge density, effectively zero in the ideal MHD case, and the electric 
field is expressed through Ohm’s law as 

E=-y+q.J; J=-&VxB. 

W is the heat flux due to collisions, namely, 

W = ---~a VT, (21) 

where K is the heat conductivity tensor due to collisions. The first term in Eq, (19) 
is the work accompanied by the expansion or compression of the fluid. Equation (19) 
then yields 

dT, 
dt= 

[(VxB).q-(V xB)]+;@d7)T. (22) 

Again all quantities on the right hand side are grid quantities. Due to the Joule 
heating term, the second term in Eq. (22), temperature is not conserved. 

The heating term in Eq. (22) is always positive definite but the others are not. Thus 
one possible difficulty could arise if we encountered negative temperatures in this 
case; however one way to overcome such a difficulty, if it occurred, would be to 
spread the heat over a few cells, (i.e. add additional heat diffusion), as is done for 
the pressure gradient force term in the shock wave application to the presented later. 
The energy conservation is discussed in the Appendix. 

C. Bounded System 

For hydrodynamic situations, a rigid but slippery wall is introduced in one direction. 
At the walls, we then enforce 

a 

(23) 

with particles reflected elastically. To calculate the pressure gradient force, fast 
Fourier transform techniques can still be used in the periodic directions while finite- 
differencing is employed in the bounded direction. 

In the magnetohydrodynamic case a rigid, slippery and metallic wall is implemented 
in one direction, while the others remain periodic. In addition to the above two 
boundary conditions and specular reflection of the particles at the walls, we now have 

BL = 0, 

E,, = (v x B),, = 0, (24) 
out B,, =B:? 

The particle pressure calculation is the same as in the hydrodynamics case. The flux 
and momentum are still conserved. 
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III. CODE IMPLEMENTATION AND TESTING 

The scheme which couples the Lagrangian finite-sized particle pushing with the 
Eulerian held updating described in the previous section has been implemented in 
various dimensions (1, 2, 24 and 3), various dynamics (hydrodynamic, MI-ID, iso- 
thermal, full temperature dynamics etc.), various geometries and boundary conditions 
(cartesian, toroidal, with or without surfaces etc.). More than 20 of these varieties 
of working codes have been implemented on the UCLAIBM360/91 and on the 
Livermore CDC7600. These codes have been extensively tested on numerical and 
physical grounds. Alternate codes, such as the FFT version (i.e., FFT for the pressure 
gradient calculation with finite differencing for the magnetic fieids) and the conven- 
tional finite difference version are checked against each other. They fare quite well 
and give essentielly the same results. In the following we describe in detail scheme 
implementation and the simulation results of code checking. 

A. 1-D Code 

A one-dimensional (1-D) hydrodynamics code, with periodic boundary conditions 
was implemented on the Livermore A machine and on the IBM 360-91 at U.C.L.A. 
Typically 15 particles per cell are used on a 128 cell grid. The particle half-width 
is taken to be one grid spacing d. Particle quantities such as velocity and position 
are effectively leap frogged. Particles are given small (typically 0.01 to 0.1 CJ random 
initial velocities. The dispersion ielation for sound waves is then obtained from a 
correlation of density over 4000 time steps (At = 0.2OC,;I). The results are in good 
agreement with the linear dispersion curve given by theory (w = k,,C,), as shown 
in Fig. la, at least for modes one through more than twelve. In fact, the slope of the 
simulational dispersion curve shoots slightly above that predicted by theory. This 
is due to the fact that apart from the “fluid temperature” the random motion of the 
macroparticles constitutes an additional source of temperature. The actual slope is 
thereby given by GT = (CsB + 8~~)i/~, where 60 is the average “thermal” velocisy 
of the macroparticles. 

It is interesting to compare how square or triangular shaped waves propagate 
under force free conditions in the present code and in a conventional Eulerian code. 
The latter shows a severe deformation of square or triangular shapes. Even the recent 
flux corrected transport Eulerian [12] code greatly alters triangular waves. On the 
other hand, the present code induces no deformation, as expected. 

B. 2-D Codes 

Tw~o distinct versions of the scheme described in Section 2 were implemented on 
the IBM 360-91 at UCLA as well as the Livermore A machine, one hydrodynamic 
version and one ideal magnetohydrodynamic configuration. 

The two-dimensional hydrodynamic (2-D hydro) code uses 1% particles per cell 
in a 64 x 16 periodic system in Cartesian geometry. Effective particle size is again 
one grid spacing d. As in the 1-D code, the standard leapfrog algorithm is used to 



388 LEBOEUF, TAJIMA, AND DAWSON 

advance particles and velocities in time and thermal random excitation of the particles 
is implemented at t = 0. A correlation of the density over 2000 time steps 
(At = 0.2C;‘Ll) yields a sound wave dispersion relation which agrees favorably with 
theoretical predictions (Fig. lb). This is so for the first few modes until Brillouin 
zone effects [17] or the finite size particle effects set in at short wavelengths. The time 
to perform a particle push in the standard Fortran code is 35 ,usec on the IBM 360/91 
computer. 

6,0- 

6.0- 

t 
3 

0 2.0 4.0 6.0 

kxcs- 

8.0 

FIG. 1. Sound wave dispersion relation. a) I-D code results. b) 2-D code results. Circles represent 
the simulation results, the full line theory. 

The 2-D ideal MHD code employs 4 particles per cell in a 128 x 32 periodic system 
in Cartesian geometry. Particle size is also one cell. The constant magnetic field is 
along the longer x’ direction (in principle it can have an arbitrary orientation in the 
x-y plane). The magnetic field strength used yields an Alfven speed of 5C, . Particles 
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are initially given small random velocities. Correlations of the induced magnetic 
fields in the .Y and y directions over 2000 time steps (A f = 0.1 C;‘a; smaller time steps 
must be used in order to comply with the CFL condition for Ve4 = 5CJ. These yield 
dispersion relations for the Alfven waves a’B,(k, ) 0) and magnetosonic waves 

FIG. 2. Configurations of the models. a) 2-l/2 D MHD model. The magnetic field can print 

in any direction and the cylindrical rod particles can move in all directions. b) 3-D MHD model 
with spherical or ellipsoidal particles. c) The 3D surface code grid arrangement d) The 3D surface 
code guard grids, surface position and particles placing. e) The toroidal comiguration is modeled 
as an annuius with metallic walls. The system is periodic in the I direction. 

6&.(0, k,) identical to those of Fig. 3 obtained with the 2; D version of the MHD 
scheme. Note that fewer particles are needed in the MHD case in order to obtain a. 
sharp frequency spectrum for the eigenmodes, in low or moderate /3 plasmas. The 
divergence of the magnetic field remains zero within machine precision througkrout ti-re 

run both on the IBM and CDC computers, -IO-“” for the CDC machine. Such 
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good divergence values are important especially for low ,8 plasma simulations invoving 
some density fluctuation activity, because this is related to magnetic activity: 

(25) 

where 6n is the error density fluctuation created by an error magnetic perturbation 
due to nonzero divergence of the magnetic fieId B. 

k, k-- 

FIG. 3. Dispersion relation for Alfven (a) and magnetosonic (b) waves in the 2-l/2 D code. 
PL = 5C, and the external magnetic field is in the x direction. Circles represent the simulation 
results, the full line theory. 

C. 24 MHD Code 

For the test runs of the 29-D MHD code, the particle number and size as well 
as the time step size were taken to be the same as above. The magnetic field and 
velocity now have a third component, although spatial variations are limited to the 
x-y plane. Particles are infinite cylindrical rods moving in any of three directions. 
The magnetic field can have an arbitrary orientation in the x-y-z coordinate system. 
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This is depicted in Fig. 2a. For the testing cases it was, however, taken along the longer 
x direction. The dispersion relation of Alfven waves (6B,(k,, 0) and SB,(kX : 0)) as 
well as of magnetosonic waves (S&(0, k.,)), obtained from a 2000 time steps 
correlation of the various magnetic field components in the thermal runs are 
compared to theory [w = k,Vr and mhrS = k,(VA2 x cT~>~‘“]. As is shown in 
Figs. 2a and 2b excellent agreement is obtained for Alfven waves and magnetosonic 
waves until Brillouin zone effects or the finite size particle effects set in. The divergence 
of the magnetic field is again zero within machine precision. Time to perform a 
particle push in the standard Fortran code is 60psec on the IBM 360/91 computer. 
and magnetosonic modes with j3 less than one) and the “particle modes” (soured 

wave and its related modes), it is clear that the “mesh modes” have math sharper 
resolution than the “particle modes” when the degree of freedom (such as numbers 
of grids and particles) are the same in both cases. This was anticipated; although in 
the present codes the particles play a vital role in order to guarantee fluid density 
conservation and fluid momentum conservation, modes of magi&c waves in low 
to moderate p plasmas are transmitted primarily through the magnetic stress tensor 
which is a grid quantity as if the grids were an ether medium. Qn the other hand, 
modes of sound waves or sonic shock waves are transmitted through tbe medium 
which is represented on the mesh by an ensemble of particles. 

D. 3-O Codes 

Several distinct ideal and nonideal fully three-dimensional MHD codes are at 
present in operation. Here we describe scheme implementation and code testing 
results of the 3-D Cartesian ideal MHD codes with periodic boundary conditions 
and with metallic boundary conditions. We also present a scheme for implementation 
for toroidal geometry. 

A 3-D Cartesian code with periodic boundary conditions is implemented as follows. 
A full three-dimensional Cartesian mesh is used to accumulate the fluid quantities 
from the particle quantities. This code is tested by comparing simulation results on 
the IBM computer to the theoretical linear dispersion relation of AiFveu and magheto- 
sonic waves. Eight particles per unit cubic cell are used in a 32 x 8 x 8 system for 
Alfven waves or an 8 x 32 x 8 one for magnetosonic waves, the constant initial 
magnetic field being in the x direction in both cases. This insures a satisfactory number 
of modes in both directions in turn. A sketch of the model is shown in Fig. 2b. Two 
polarizations in the induced field are included, namely 8B,(X-, ) 0,O) and GBZ(k, : 0, 0) 
for Alfven waves and a&(0, k, , 0) and B,(O, k, , 0) for magnetosonic waves; we 
have sacrificed the third branch of the magnetosonic waves for testing purposes, 
Dispersion curves obtained from the correlation over 1000 time steps (d t = 0. i C;‘LI) 
of the relevant magnetic field components are in excellent agreement with theoretical 
predictions [ls] as is shown in Figs. 4a and 4b. The divergence of the magnetic field 
is zero within machine precision. Two distinct methods have been utilized to calculate 
the pressure gradient, the conventional finite difference method and the fast Fo’urier 
transform technique employed in the lower dimensions. In addition to the purpose 
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of checking out the accuracy of two independent codes one against the other, this 
gave us experience with a pure finite difference code which method can easily be applied 
to systems of a bounded plasma or to non-Cartesian geometries. Finite differencing 
has an advantage here in contrast to the ordinary charged particle codes in that we 
do not have the difficulty arising from excessive noise due to Coulombic collisions of 
particles, because the particles in the present codes are neutral. In fact, both versions 

5.0 

4.0 - 

0 

3.0 
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0 

4'0# / j 

2.c 

jc 

/' 
ibl 

0 
0 1.0 2.0 3.0 4.0 

k,V, - 

FIG. 4. Dispersion relation for Alfven (a) and magnetosonic (b) waves in the 3D periodic code. 
v~ = 4C, and the external magnetic field is in the x direction. 

of the codes show excellent agreement up to the fourth decimal point of any physical 
quantity for the MHD case. The test results shown are those of the FFT version. In 
the hydrodynamic case, however, the finite difference code is weakly unstable. It 
is subject to a lattice instability. This instability is readily removed by either imple- 
menting the temperature equation (Eq. (22)) or by introduction of a magnetic field. 
This is because the unrestrained relative lattice vibration of the grids is suppressed 
by introduction of binding forces between the cells, e.g., the last term in Eq. (22) 
for temperature. 

A Cartesian 3-D code with rigid metallic walls is implemented in the following way. 
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The SySteM is now bounded in the z direction and periodic in the other two. The 
configuration consists of a series of planes at each grid point in the bounded z-direc- 
tion, as shown in Fig. 2c, on which the relevant quantities are treated as in the 2D 
codes, since periodicity is retained in the x and y direction. Finite differences between, 
these planes are carried out in the z-direction to calculate the pressure force and the 
magnetic fields. The boundary conditions described in Section IIC are incorporated. 
Two guard grids are introduced and values of magnetic field a.nd pressure are fixed 
either by the boundary conditions or determined by symmetry. Particles are loaded 
uniformly about the grid points of the real system. This is illustrated in Fig. 2d 
The actual surface is positioned between two grids. In practice the guard pcin.t 
quantities are determined from the known real system quantities as follows. 

Q(1) = -v,(2), 

B,(1) = --B&9, (26) 

E,,(l) = (U x B),,(l) = --E,,(2) = -(Z’ x B),,(2), 

thereby insuring that vi, B, and E,, are zero on the actual surface. Furthermore 

B,,(l) = B,,W 

Identical relationships hold at the other wall. In this way, ail quantities appearing 
in the finite differences are fully defined from known real system quantities. 

With such boundary conditions, this scheme is again Rux conservative and the 
divergence of the total magnetic field is indeed zero within machine precision. With 
8 particles per unit cell, in an 8 x 8 x 32 system with an initial constant magnetic 
field along the z direction, correlations of 6B, and 6B,g for fixed k, are taken over !OOO 
time steps (t = O.lC;lil) and compared with theoretical predictions for Alfven 
wave dispersion. Fig. 5 shows reasonable agreement between the two values. 

A toroidal code with rigid metallic boundaries in the r direction is implemented 
in the following fashion. A sketch of our toroidal model is shown in Fig. 2e. We settle 
upon cylindrical geometry with a hole from I’ = 0 to I” = I’min . There are two metalhc 
walls at T = t’,in and I’ = rLnas . Periodic boundary conditions are used in the z and 
# directions while the previously discussed metallic boundary conditions are imposed 
in the I’ direction. Fourier transforms serve to calculate the pressure force in &e 
periodic direction while NGP weighting and finite differences are implemented in 
the I” direction. 

To have a uniform initial density, particles must be loaded in a no&near way. 
Let r(i) be the ith particle radial coordinate, r,in and T,~, respectively the inner and 
outer toroidal radii. The formula for r(i) reads as follows 

r(i) = *(r(l) + rwall - rmin + [(r(l) + j’wzll - ~m:n)’ 

+ 4(Pma,x dP(I - 1) + r(l) ~ (Pmin - rwan))]“‘). (28) 

Here ~(1) represents the position of the first particle, rrall that of the first wall and 
Br stands for the grid spacing. 
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In order to have force balance a toroidal field of the form B,a l/r is imposed. 
Because of the particular geometry of the model, extra forces must be taken into 

account in the equation of motion for the 4 and i’ components of the velocity (the 
centrifugal force and half the Coriolis force) 

dvi6/dt = [-VP -B x (V x B)]” - (v)~(v>*/~, (2% 

dUi’/dt = [-VP - B X (V X B)]’ + [(v>“]“/~~ (30) 

Because of the geometrica factors r and l/r associated with the differential operators 
V, Vx and V as well as the last terms in Eqs. (29) and (30), the equations of motion 
and field pushing equation are not anymore cast in the momentum and flux con- 

0 1.0 2.0 3.0 

kxV,- 

4.0 

FIG. 5. Alfven wave dispersion relation in the 3D surface code. The metallic surfaces are located 
at I = O.Sd and z = 32.5A and the x and y  directions are periodic. VA = 4C, and the external 
magnetic field is in the z direction. 

servative form. For this reason, when tests of the code were performed on the IBM 
computer, the divergence of B was of the order of 10-5. The scheme was however 
numerically stable. 

IV. APPLICATIONS 

We shall demonstrate various applications of the present code to fluid systems 
which involve abrupt discontinuities, highly nonlinear evolution of an instability 
and sharp plasma profiles including a vacuum in hydrodynamics and magneto- 
hydrodynamics. With slight accommodations the following problems are readily 
simulated in our code: shock wave propagation on the 1-D hydrodynamic code, 
the Kelvin-Helmholtz instability and its nonlinear evolution and a blunt projectile 
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in a fluid on both the 2-D hydrodynamic and the 24-D magnetohydrodynamic codes. 
All studies were performed on both the UCLA IBM 360-91 and the Livermore 
CDC 7600 computers. 

A. Shock waves 

Shock wave formation due to an abrupt density jump has been simulated using the 
present code in 1-D. The code is slightly modified to accommodate a sharp discon- 
tinuity, mainly to avoid excess short scaled density oscillations due to the finite number 
of particles and the finite grid. The simulation shows propagation of shock fronts 
and formation of rarefaction waves. 

Fifteen particles per cell on the average are loaded on a 125 ceI1 system so as to 
produce the square wave type density profile shown in Fig. 6a. As isothermai fluid 
model is used. The density of the dense part is 20, while that of the dilute part is 10. 
Particles are initially at rest. The pressure and fluid velocity are averaged over three 
grid points to insure a smooth flow across the discontinuity, apart from the smoothing 
due to the viscous drag coefficient. This produces a minimum shock thickness of 3 
grid spacings. Figure 6 shows the time development of the density profile for this free 
expansion shock. The observed shock thickness is somewhat larger at IOd than the 
expected three grid spacings. This is probably due to the coarse NGP accumulation 
of the particle quantities at the grid points to obtain the fluid quantities. The fluid’s 
evolution is characterized by the rapid formation of a density plateau between rare 
faction and shock front regions. The plateau is the density level reached when the two 
shocks collide before recurrence of the initial state. The gas attains its maximum 
velocity in this same plateau region as is clear from the fluid velocity frames of Fig. 6. 

A schematic time evolution of the density profile is shown in Fig. 7, with the iniria? 
state in Fig. 7a, plateau formation at intermediate times in Fig. 7b and the state 
of the gas before collision at late times. With the aid of Fig. 7b, conservation of mass 
is written 

pp(u, - v,) = prf$? , (31) 

where pp and p1 represent the plateau density and the density level of the diiute part 
of the gas while u, and z15 stand for the shock front speed and the fluid velocity in the 
plateau region. Conservation of momentum reads 

P, - PI = p$l,vf . (32) 

Here P, and Pi are the gas pressure in the plateau and dilute regions. For the iso- 
thermal gas under consideration P = Cs2p, with C, being the sound speed. 
Normalizing all velocities with respect to C, , the above two equations yield 

Vf = us - l/u, , 

PnIPl = ~~s2* 
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bl 

0 50 400 

FIG. 6. Free expansion shock in the 1-D hydrodynamic code. Initially the density at x = (326, 
964) is twice the background density. a) The density profile at t = 0. b) The density profile at f  = 
2OC;ld. c) The fluid velocity at I = 2OC;‘d. d) The density profile at t = 3OC;ld. e) The fluid 
velocity at t = 3OC;lA. 

From Figs. 7a and 7c, where the various W’S represent the length of a particular 
density region, conservation of energy is written 

whoph In ph + “z’pz In pZ 

= w,p, In pp + wzpz In pz + ~~~~pp~vf2. (35) 

In the above equation, all wp In p stand for the potential energy of the various regions 
of the isothermal gas while the last term stands for the kinetic energy of the still 
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FIG. 7. Schematic evolution of the density profile for tbe free expansion shock. a) The initial 
state. b) The plateau formation at intermediate times. c) The late state. 

expanding gas. The quantity ph is the density level of the dense part of the gas. Using 
conservation of mass 
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and Eqs. (33) and (34), the following equation is obtained from Eq. (35) 

(u,2 - 1) ln(pn/pl) - ~82 ‘1 - fi ( Ph ) [ In us2 + k (u: - 2 + t)] = 0. (37) 8 

This determines u, , hence pV and v, , in terms of the only known quantity in the 
problem, the initial density ratio pA/pt . 

Solution of Eq. 37 for the experimental ratio phIpI = 2 yields u,” = pB/pl = 1.41 

or L!~ = l.l9C, and f = 0.35C8 compared to measured values of 1.417 for pp/pl, 
l.l6C, for U, and 0.347C, for nf . Good agreement between theory and simulation is 
also observed for a density ratio of 3 to 1. 

Small scale oscillations in front of the shock as well as behind it, are due to dis- 
persion present in the model through the use of finite size particles and grids. They 
can be suppressed, to some extent, by increasing the number of particles. 

E. K&n-Hehhotfz Instability 

The Kelvin-Helmholtz instability due to a flowing fluid in contact with a stationary 
fluid has been simuIated using the 2-D and 2-$D codes for the hydrodynamics case 
and the MHD case, respectively. We observed formation of vortex structures as the 
instability develops in the hydrodynamic case. With a strong enough magnetic field 
the instability is stabilized as expected. 

Both a subsonic flow case and a supersonic one are given for the hydrodynamic 
cases. Sixteen particles per cell are loaded uniformly throughout the 32 x 32 system. 
The middle layer of these particles is given a streaming velocity of 0.3C, in the sub- 
sonic case and 1.5C, in the supersonic one. A slight perturbation of the form 
y = E sin&x), where E is typically 0.01, is initially imposed on the streaming part 
of the fluid to start off the Kelvin-Helmholtz instability. Figure 8a depeicts the initial 
x-y space pattern for the streaming particles. Subsequent frames in Fig. 8 show the 
parallel development of this x-JJ-pace, at equivalent times, for subsonic flow on the 
left and supersonic flow on the right. In the former, small vortices formed at the 
contact surface between stationary and streaming particles slowly propagate inward, 
an indication of the gentle linear growth of the Kelvin-Helmholtz instability. In 
the latter, violent early distortion of the flow pattern rapidly evolves into two great 
vortices which subsequently rotate around each other. These vortices survive for a 
lont time and provide the system with a rather marked structure. The last frame in 
Fig. 8 is a collage of two such flow patterns to clearly demonstrate this. Analysis of 
the simulation results in the subsonic case, yields a growth rate for the Kelvin- 
Helmholtz instability in agreement with theory, i.e., y N $k,Vfl, . More precisely 
for Vn,, = 0.3C, and a mode 1 perturbation (k, = 0.196), theorery predicts 
y = 2.95 x lo-” while simulation yields “J - 0.03. 

It has been known that a constant magnetic field along the flow direction stabilizes 
the Kelvin-Helmholtz instability if k/A > l/flow , while it has no effect for stabilization 
if it is transverse to the how direction [19]. To observe this we use the Z-$D MHD 
code described previously. The constant magnetic field is along the x direction and 
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FIG. 8. Onset and nonlinear evolution of the Kelvin-Helmholtz instability. Instantaneous frames 
extracted from a movie show the streaming particles in x - y space. Initially the streaming particles 
are situated at y = (9.5d, 21.5d) with a velocity of 0.3C, in the subsonic case and 1.5C, in the super- 
sonic one. a) The initial state. b) The intermediate stage (t 4 200 C;‘d) for supersonic flow. 
c) The intermediate stage (t = 40 C,-ld) for supersonic ffow. d) The late stage (t - 600 C;*d) for 
subsonic flow. e) Vortex formation at t = 120 C;‘d for supersonic flow. f) Late stage (t = 200 ~;~d) 
for supersonic flow. Two frames have been juxtaposed in the x direction. 
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the middle layer of the fluid is given a velocity V now of 1.5C, in the x direction in 
addition to initial random velocities in the x and y direction. We expect a broad 
spectrum of modes to be unstable due to the Kelvin-Helmholtz instability. With 
relatively weak magnetic field (VA = C, < VnOw), the instability develops in spite 
of the existence of the magnetic field. For VA = Vnow = 1.5C, , the flow is still 
weakly unstable while for values of VA in excess of Vflow the situation is stable. 

C. Obstacle in a Flow/Projectile in a Fluid 

Flow patterns and bow shock formation due to an “obstacle” in a flow have been 
simulated on the 2-+D magnetohydrodynamic code. The system is equivalent to a 
projectile in a stationary fluid by a Galilei transformation. The obstacle creates 
a laminar pattern or a turbulent drag pattern when it is placed in a subsonic flow 
with or without magnetic field. On the other hand, the obstacle can create a shock 
“cone” (bow chock) with its apex at the obstacle and a low density region in the 
shadow of the obstacle when the flow is superalfvenic or supersonic with or without 
the magnetic field. 

We employ 64 x 64 particles in all on a 32 x 32 cell system with flow velocity in 
the s direction. The static magnetic field, when present, is oriented in the z direction. 
Our “obstacle” is represented by an attractive or repulsive force potential placed 
at the center of the system. In the present runs, the force is repulsive: 

F = (F,, - (r - r,,)/b2) exp[--(r - r0)“/2b”]. (38) 

FIG. 9. Hydrodynamic supersonic flow around an obstacle. The Mach number is 2 and the 
obstacle is located at (164, 164). The contours of the fluid velocity in they direction at i = 30 C;‘A 
are shown. 
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Here F. is an adjustable normalization constant for the force, b represents the half- 
width of the force potential and r,, is the force center. The range of the obstacle force 
is effectively 1 grid length. In order to simulate an infinitely long flow (nonperiodic) 
a particle which leaves one side of the system in the x direction reenters from the other 
with a random position in ~7 and initial velocities at t = 0 for D, and D, . This way 
the recirculating particles in the x direction have no memory of the perturbation when 
they reenter. In they direction the system is periodic. However, magnetic perturbations 
are not so easily eliminated and to some extent they reenter the system. 

Figure 9 shows a result of the simulation of a hydrodynamic supersonic flow with 
an obstacle. The Mach number with respect to the sound speed is 2. The shock cone 
is formed with its apex at the obstacle as is expected. A rather large shadow of vacuum 
is created behind the flow. The shock angle CY is given [20] by a = sinl(l/dlZ), which 
is 30” in the simulation. 

Figure 10 exhibits the case of a magnetohydrodymanic flow with an obstacle, 
The Mach number with respect to I/‘k is 2.5. The shock structure in the induced 
magnetic field is conspicuous. The flow velocity patterns also suggest the shock 
formation. 

When a vacuum is created, we have to take into account the fact that the magnetic 
field in VXXU~ is not infinitely rigid either. By definition there is no currem in vacuum. 
Therefore the algorithm (Eq. (15)) implies that the magnetic field in vacuum does not 
change. But in reality the MHD fluid can bend the magnetic field in vacuum adjacent 
to the fluid. For cases where we expect to or actually have vacuum, we therefore 
implement the following equation: 

(39) 

where A is a vector potential of the magnetic field B. We adopted the Coulomb 
gauge. Equation (39) is not redundant when the system involves a vacuum. It plays 
a role to extrapolate the magnetic field from the plasma region into the current free 
region. The vector potential and thereby the magnetic field instantaneously adjusts 
to the plasma current. The current is calculated by J = (c/47;) V x B in the region 
where there is plasma. In a periodic system the homogeneous solution to Eq. (32) 
can be set equal to zero. We thus calculate the special solution to Eq. (32) through the 
FFT, given that J is expressed as V x B in Fourier space. 

In practice calculation of the vector potential A is also useful to plot the magnetic 
field lines. In a two dimensional system the equation for the field line is given by 

Equation (40) is recast in terms of the vector potential into dA, = 0. Therefore 
plotting of equi-contour lines of A, yields the field lines plot of the magnetic field. 
Two field lines plots are shown in Fig. 11, one for a supersonic superalfveaic Sow 



402 LEBOEUF, TAJIMA, AND DAWSON 

X 

FIG. 10. Magnetohydrodynamic supersonic flow around an obstacle. The Mach number is 2 
and the Alfven number A (Vrlow/V~) is 2.5. Again the obstacle is situated at the center of the frames. 
a) The induced magnetic field contour at t = 16 C;‘d. b) The induced magnetic field contours in the 
z direction with the external magnetic field also in the z direction at t = 16 C’;‘d. 
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FIG. 11. Magnetic field line patterns created by an obstacle in a flow. a) The flow is supersonic 
(M = 2 and A = 2.5) with the external magnetic field in the x’ direction at I = 8 C;ld. b) The flow is 
the same as a) with the external magnetic field in they direction at f  = 8 C;‘d. c) The flow is subsonic 
(44 = 0.9 and A = 0.6) with the externa1 field in the x direction at f = 32 C;‘d. 
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(Alfven Mach number of 2.5) and the other for a subsonic, subalfvenic ffow (Alfven 
Mach number of 0.6). The former exhibits a solenoidal pattern in the induced magnetic 
field, while the latter gives a quadrupole structure for the magnetic field. 

V. CONCLUSIONS 

We have developed a type of Lagrangian MHD simulation codes utilizing the 
finite size particle method. The codes are relatively simple and straightforward 
in algorithm, numerically very stable and versatile. One can run on this simulation 
code hydrodynamic or magnetohydrodynamic problems with or whithout the 
temperature equation, with or without boundaries and in various dimensions. Since 
the code is still stable in cases of a plasma with very sharp variation of density and/or 
magnetic field and even for the formation of a local vacuum, it is expecially useful 
for the study of a relatively strong nonlinear regime of MHD instabilities. It is also 
readily applicable to shock waves and associated phenomena such as flow of the solar 
wind around the earth or other bodies, implosion/explosion in laser fusion and aero- 
space problems as well as ample applications to turbulent plasmas involved in CTR 
problems. With slight modifications, one can also simulate on the code meteorological 
problems or oceanographic problems. In fact, the equation of motion for a fluid in 
a rotating frame of reference is rather similar to that of MHD: 

dV.i 1 --- 
dt nm 

VP - V[$(s2 x x)” + CD] + 2v x s2, (41) 

where the second term represents the centrifugal force and the potential force and the 
last term the Coriolis force. The Coriolis term resembles the Lorentz force. Any other 
fluids with other force laws could also be handled by implementing the appropriate 
forces such as, for example, the Yukawa force. Coding for a multi-species MHD 
fluid is also straight-forward in our scheme. Thus one should be able to exploit 
the code for a wide range of problems in plasma physics or fluid dynamics, as well 
as related areas. Moreover, one should be able to mix Vlasov particle models for some 
hot collisionless components while retaining fluid equations for other components 
(for example electrons) of the system. The similarity in treatment between the particle 
and fluid models should make hybrid models relatively easy to construct. 

APPENDIX. TIME-CENTERED SCHEME AND ENERGY CONSERVATION 

We discuss the time-centering scheme and the energy conservation of the code. 
In the text we described the leap-frog scheme for the particle positions and velocities 
coupled with the conservative Lax method for the magnetic field. In this appendix 
we introduce a fully time-centered scheme which is especially useful for the case with 
temperature equation. Although the scheme in the text was, in principle a first 
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order scheme in the magnetic field pushing, the accuracy was quite satisfactory as 
was discussed earlier. For instance, the value of divergence L: and the sharp spectrum 
of the magnetic waves have demonstrated this. The scheme to be discussed is bulkier 
than the one adopted in the text. But this scheme has an attractive property, energy 
conservation, in addition to the second order accuracy guaranteed by full time- 
centering. 

The system of NII-ID equations with the temperature equation can be schematically 
written as follows, 

do (A-l: 

dT. 
(,Q.;) 

i? = F,(B, u), (A-4) 

where the quantities appearing in the arguments of the RHS of all equations, except 
Eq. (A-2), are fluid quantities. Inspection of Eqs. (4-l) to (A-4) quickly tells us that 
rhere is no intrinsic time-centering scheme; because a quantity evaluated on the left 
hand side should also appear on the right hand side staggered by a half-time step. 
-4s a result, a few quantities are entangled. However, if we store old values one full 
step back, we can extrapolate new values at the desired time step. A desirable fuil 
time-centering can be written as 

where integers or half integers as superscripts represent the time step and the asterisk 
stands for extrapolated values. For example, the extrapolation may be given as 

We will show that with this assignment of time-steps for the quantities the total 
energy of this sytem is exactly conserved before and after pushing. In addition the 
code still preserves the conservative properties of total momentum and the flux, 
as was discussed in the text. 

Let us calculate the temporal evolution of the magnetic field energy, the internal 
energy and the fluid kinetic energy. In order to avoid excess superscripts we write 
the following equation in a differential form instead of in a difference form. Conversion 
from one to the other is straightforward. We also normalize quantities so that c 
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and 4n- do not appear. First, the evolution of the magnetic field energy is calculated 
from Ampere’s law and Faraday’s law: 

&+J.E=E+VxB-B.VxE 

= div(B x E). 
(A-10) 

Utilizing Ohm’s law E = ~5 - v x B, Eq. (A-10) is cast into 

iB2 = -VP + J . v x B - q div(J x B), (A- 11) 

where the first term on the RHS is the energy loss due to Joule heating and the second 
term is the work done by the Lorentz force. Summation over all the grids will give 
the evolution of the total magnetic field energy: 

p2 = -CT~z$-C~ * v x B - v c div(J x B). (A-l 1’) 
9 B 9 

The internal energy can be calculated from Eq. (22): 

+&Ii... VT - VT2 c Vi - CT)), (A-12) 
9 ie!7 9 ie!? 

where (T,\ = &, T/Zies 1. 
Equation (A- 12) becomes 

xdr” = -1nTV.vf~qJ”. 
i dt 9 !l 

The kinetic energy of fluid motion can be calculated from Eq. (2). Multiplying by 
the fluid velocity u and summing over all the particles, we obtain 

T nzu $ vi = - c v  . VnT + c v . J x B - v c c (ui - (v)), (A-14) 
g 9 B iel 

where (v) = xisg VilCipg 1. Note that <TJ and (v) are different from T and v. We 
will come back to this point later on in more detail. The last term in Eq. (A-14) 
is zero. The total energy evolution of the system is given by adding Eqs. (A-11’), 
(A-13) and (A-14). Note that all the quantities on the RHS’s of Eqs. (A-11’), (A-13) 
and (A-14) can be expressed in terms of quantities evaluated at time step 12, because 
of the assignments of time steps in Eqs. (A-5) to (A-8). The last term in Eq. (A-11’) 
is zero, because of the finite difference scheme coupled with periodic boundary 
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conditions (or metallic boundary conditions). Wtiting the superscripts explicteiy, 
the summation of Eqs. (A-11’), (A-13) and (4-14) yields 

To derive Eq. (A-15), we used the vector identity A e B x A and the ‘“surface” 
summation as mentioned for Eq. (A-11’). Given that 0’“‘ - +(~~“i-l~~ + P-~ ‘): 
Eq. (a-15) is finally cast into 

(A-16) 

The first, the second and the third terms on the left hand side are interpreted respec- 
tively as the field energy, the internal energy and the kinetic ener,v after pyshing at 
time step n. The corresponding ones on the right hand side are interpreted as the 
energies before pushing at t = YE dr. Thus the total energy before and after the time 
step n is conserved. 

Some comments are in order for the time step used to calculate the drag terms as 
in Eqs. (A-12) and (A-14). The third quantities T and L’ are given by extrapolaticn 
as in Eq. (A-9). 
They are therefore evaluated exactly at time step n. On the other hand, (v) and IIT> 
are given as 

(A- I-7) 

Prima facie the definitions in Eqs. (A-17) and (A-18) seem to involve a strange m&me 
of time steps. However, this is only the scheme which makes the summation of the 
drag terms over a cell exactly zero: 

In fact, if one takes a “time-centered” assignement such as 

the system is numerically unstable. 
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